Actual source code: bqpip.c
 
   petsc-3.7.7 2017-09-25
   
  1: #include <../src/tao/bound/impls/bqpip/bqpip.h>
  2: #include <petscksp.h>
  6: static PetscErrorCode TaoSetUp_BQPIP(Tao tao)
  7: {
  8:   TAO_BQPIP      *qp =(TAO_BQPIP*)tao->data;
 12:   /* Set pointers to Data */
 13:   VecGetSize(tao->solution,&qp->n);
 15:   /* Allocate some arrays */
 16:   if (!tao->gradient) {
 17:       VecDuplicate(tao->solution, &tao->gradient);
 18:   }
 19:   if (!tao->stepdirection) {
 20:       VecDuplicate(tao->solution, &tao->stepdirection);
 21:   }
 22:   if (!tao->XL) {
 23:       VecDuplicate(tao->solution, &tao->XL);
 24:       VecSet(tao->XL, -1.0e-20);
 25:   }
 26:   if (!tao->XU) {
 27:       VecDuplicate(tao->solution, &tao->XU);
 28:       VecSet(tao->XU, 1.0e20);
 29:   }
 31:   VecDuplicate(tao->solution, &qp->Work);
 32:   VecDuplicate(tao->solution, &qp->XU);
 33:   VecDuplicate(tao->solution, &qp->XL);
 34:   VecDuplicate(tao->solution, &qp->HDiag);
 35:   VecDuplicate(tao->solution, &qp->DiagAxpy);
 36:   VecDuplicate(tao->solution, &qp->RHS);
 37:   VecDuplicate(tao->solution, &qp->RHS2);
 38:   VecDuplicate(tao->solution, &qp->C0);
 40:   VecDuplicate(tao->solution, &qp->G);
 41:   VecDuplicate(tao->solution, &qp->DG);
 42:   VecDuplicate(tao->solution, &qp->S);
 43:   VecDuplicate(tao->solution, &qp->Z);
 44:   VecDuplicate(tao->solution, &qp->DZ);
 45:   VecDuplicate(tao->solution, &qp->GZwork);
 46:   VecDuplicate(tao->solution, &qp->R3);
 48:   VecDuplicate(tao->solution, &qp->T);
 49:   VecDuplicate(tao->solution, &qp->DT);
 50:   VecDuplicate(tao->solution, &qp->DS);
 51:   VecDuplicate(tao->solution, &qp->TSwork);
 52:   VecDuplicate(tao->solution, &qp->R5);
 53:   qp->m=2*qp->n;
 54:   return(0);
 55: }
 59: static PetscErrorCode  QPIPSetInitialPoint(TAO_BQPIP *qp, Tao tao)
 60: {
 62:   PetscReal      two=2.0,p01=1;
 63:   PetscReal      gap1,gap2,fff,mu;
 66:   /* Compute function, Gradient R=Hx+b, and Hessian */
 67:   TaoComputeVariableBounds(tao);
 68:   VecMedian(qp->XL, tao->solution, qp->XU, tao->solution);
 69:   MatMult(tao->hessian, tao->solution, tao->gradient);
 70:   VecCopy(qp->C0, qp->Work);
 71:   VecAXPY(qp->Work, 0.5, tao->gradient);
 72:   VecAXPY(tao->gradient, 1.0, qp->C0);
 73:   VecDot(tao->solution, qp->Work, &fff);
 74:   qp->pobj = fff + qp->c;
 76:   /* Initialize Primal Vectors */
 77:   /* T = XU - X; G = X - XL */
 78:   VecCopy(qp->XU, qp->T);
 79:   VecAXPY(qp->T, -1.0, tao->solution);
 80:   VecCopy(tao->solution, qp->G);
 81:   VecAXPY(qp->G, -1.0, qp->XL);
 83:   VecSet(qp->GZwork, p01);
 84:   VecSet(qp->TSwork, p01);
 86:   VecPointwiseMax(qp->G, qp->G, qp->GZwork);
 87:   VecPointwiseMax(qp->T, qp->T, qp->TSwork);
 89:   /* Initialize Dual Variable Vectors */
 90:   VecCopy(qp->G, qp->Z);
 91:   VecReciprocal(qp->Z);
 93:   VecCopy(qp->T, qp->S);
 94:   VecReciprocal(qp->S);
 96:   MatMult(tao->hessian, qp->Work, qp->RHS);
 97:   VecAbs(qp->RHS);
 98:   VecSet(qp->Work, p01);
 99:   VecPointwiseMax(qp->RHS, qp->RHS, qp->Work);
101:   VecPointwiseDivide(qp->RHS, tao->gradient, qp->RHS);
102:   VecNorm(qp->RHS, NORM_1, &gap1);
103:   mu = PetscMin(10.0,(gap1+10.0)/qp->m);
105:   VecScale(qp->S, mu);
106:   VecScale(qp->Z, mu);
108:   VecSet(qp->TSwork, p01);
109:   VecSet(qp->GZwork, p01);
110:   VecPointwiseMax(qp->S, qp->S, qp->TSwork);
111:   VecPointwiseMax(qp->Z, qp->Z, qp->GZwork);
113:   qp->mu=0;qp->dinfeas=1.0;qp->pinfeas=1.0;
114:   while ( (qp->dinfeas+qp->pinfeas)/(qp->m+qp->n) >= qp->mu ){
116:     VecScale(qp->G, two);
117:     VecScale(qp->Z, two);
118:     VecScale(qp->S, two);
119:     VecScale(qp->T, two);
121:     QPIPComputeResidual(qp,tao);
123:     VecCopy(tao->solution, qp->R3);
124:     VecAXPY(qp->R3, -1.0, qp->G);
125:     VecAXPY(qp->R3, -1.0, qp->XL);
127:     VecCopy(tao->solution, qp->R5);
128:     VecAXPY(qp->R5, 1.0, qp->T);
129:     VecAXPY(qp->R5, -1.0, qp->XU);
131:     VecNorm(qp->R3, NORM_INFINITY, &gap1);
132:     VecNorm(qp->R5, NORM_INFINITY, &gap2);
133:     qp->pinfeas=PetscMax(gap1,gap2);
135:     /* Compute the duality gap */
136:     VecDot(qp->G, qp->Z, &gap1);
137:     VecDot(qp->T, qp->S, &gap2);
139:     qp->gap = (gap1+gap2);
140:     qp->dobj = qp->pobj - qp->gap;
141:     if (qp->m>0) qp->mu=qp->gap/(qp->m); else qp->mu=0.0;
142:     qp->rgap=qp->gap/( PetscAbsReal(qp->dobj) + PetscAbsReal(qp->pobj) + 1.0 );
143:   }
144:   return(0);
145: }
149: static PetscErrorCode TaoDestroy_BQPIP(Tao tao)
150: {
151:   TAO_BQPIP      *qp = (TAO_BQPIP*)tao->data;
155:   if (tao->setupcalled) {
156:     VecDestroy(&qp->G);
157:     VecDestroy(&qp->DG);
158:     VecDestroy(&qp->Z);
159:     VecDestroy(&qp->DZ);
160:     VecDestroy(&qp->GZwork);
161:     VecDestroy(&qp->R3);
162:     VecDestroy(&qp->S);
163:     VecDestroy(&qp->DS);
164:     VecDestroy(&qp->T);
166:     VecDestroy(&qp->DT);
167:     VecDestroy(&qp->TSwork);
168:     VecDestroy(&qp->R5);
169:     VecDestroy(&qp->HDiag);
170:     VecDestroy(&qp->Work);
171:     VecDestroy(&qp->XL);
172:     VecDestroy(&qp->XU);
173:     VecDestroy(&qp->DiagAxpy);
174:     VecDestroy(&qp->RHS);
175:     VecDestroy(&qp->RHS2);
176:     VecDestroy(&qp->C0);
177:   }
178:   PetscFree(tao->data);
179:   return(0);
180: }
184: static PetscErrorCode TaoSolve_BQPIP(Tao tao)
185: {
186:   TAO_BQPIP          *qp = (TAO_BQPIP*)tao->data;
187:   PetscErrorCode     ierr;
188:   PetscInt           its;
189:   PetscReal          d1,d2,ksptol,sigma;
190:   PetscReal          sigmamu;
191:   PetscReal          dstep,pstep,step=0;
192:   PetscReal          gap[4];
193:   TaoConvergedReason reason;
196:   qp->dobj           = 0.0;
197:   qp->pobj           = 1.0;
198:   qp->gap            = 10.0;
199:   qp->rgap           = 1.0;
200:   qp->mu             = 1.0;
201:   qp->sigma          = 1.0;
202:   qp->dinfeas        = 1.0;
203:   qp->psteplength    = 0.0;
204:   qp->dsteplength    = 0.0;
206:   /* Tighten infinite bounds, things break when we don't do this
207:     -- see test_bqpip.c
208:   */
209:   VecSet(qp->XU,1.0e20);
210:   VecSet(qp->XL,-1.0e20);
211:   VecPointwiseMax(qp->XL,qp->XL,tao->XL);
212:   VecPointwiseMin(qp->XU,qp->XU,tao->XU);
214:   TaoComputeObjectiveAndGradient(tao,tao->solution,&qp->c,qp->C0);
215:   TaoComputeHessian(tao,tao->solution,tao->hessian,tao->hessian_pre);
216:   MatMult(tao->hessian, tao->solution, qp->Work);
217:   VecDot(tao->solution, qp->Work, &d1);
218:   VecAXPY(qp->C0, -1.0, qp->Work);
219:   VecDot(qp->C0, tao->solution, &d2);
220:   qp->c -= (d1/2.0+d2);
221:   MatGetDiagonal(tao->hessian, qp->HDiag);
223:   QPIPSetInitialPoint(qp,tao);
224:   QPIPComputeResidual(qp,tao);
226:   /* Enter main loop */
227:   while (PETSC_TRUE){
229:     /* Check Stopping Condition      */
230:     TaoMonitor(tao,tao->niter,qp->pobj,PetscSqrtScalar(qp->gap + qp->dinfeas),qp->pinfeas, step, &reason);
231:     if (reason != TAO_CONTINUE_ITERATING) break;
232:     tao->niter++;
233:     tao->ksp_its=0;
235:     /*
236:        Dual Infeasibility Direction should already be in the right
237:        hand side from computing the residuals
238:     */
240:     QPIPComputeNormFromCentralPath(qp,&d1);
242:     if (tao->niter > 0 && (qp->rnorm>5*qp->mu || d1*d1>qp->m*qp->mu*qp->mu) ) {
243:       sigma=1.0;sigmamu=qp->mu;
244:       sigma=0.0;sigmamu=0;
245:     } else {
246:       sigma=0.0;sigmamu=0;
247:     }
248:     VecSet(qp->DZ, sigmamu);
249:     VecSet(qp->DS, sigmamu);
251:     if (sigmamu !=0){
252:       VecPointwiseDivide(qp->DZ, qp->DZ, qp->G);
253:       VecPointwiseDivide(qp->DS, qp->DS, qp->T);
254:       VecCopy(qp->DZ,qp->RHS2);
255:       VecAXPY(qp->RHS2, 1.0, qp->DS);
256:     } else {
257:       VecZeroEntries(qp->RHS2);
258:     }
261:     /*
262:        Compute the Primal Infeasiblitiy RHS and the
263:        Diagonal Matrix to be added to H and store in Work
264:     */
265:     VecPointwiseDivide(qp->DiagAxpy, qp->Z, qp->G);
266:     VecPointwiseMult(qp->GZwork, qp->DiagAxpy, qp->R3);
267:     VecAXPY(qp->RHS, -1.0, qp->GZwork);
269:     VecPointwiseDivide(qp->TSwork, qp->S, qp->T);
270:     VecAXPY(qp->DiagAxpy, 1.0, qp->TSwork);
271:     VecPointwiseMult(qp->TSwork, qp->TSwork, qp->R5);
272:     VecAXPY(qp->RHS, -1.0, qp->TSwork);
273:     VecAXPY(qp->RHS2, 1.0, qp->RHS);
275:     /*  Determine the solving tolerance */
276:     ksptol = qp->mu/10.0;
277:     ksptol = PetscMin(ksptol,0.001);
279:     MatDiagonalSet(tao->hessian, qp->DiagAxpy, ADD_VALUES);
280:     MatAssemblyBegin(tao->hessian,MAT_FINAL_ASSEMBLY);
281:     MatAssemblyEnd(tao->hessian,MAT_FINAL_ASSEMBLY);
283:     KSPSetOperators(tao->ksp, tao->hessian, tao->hessian_pre);
284:     KSPSolve(tao->ksp, qp->RHS, tao->stepdirection);
285:     KSPGetIterationNumber(tao->ksp,&its);
286:     tao->ksp_its+=its;
287:     tao->ksp_tot_its+=its;
289:     VecScale(qp->DiagAxpy, -1.0);
290:     MatDiagonalSet(tao->hessian, qp->DiagAxpy, ADD_VALUES);
291:     MatAssemblyBegin(tao->hessian,MAT_FINAL_ASSEMBLY);
292:     MatAssemblyEnd(tao->hessian,MAT_FINAL_ASSEMBLY);
293:     VecScale(qp->DiagAxpy, -1.0);
294:     QPComputeStepDirection(qp,tao);
295:     QPStepLength(qp);
297:     /* Calculate New Residual R1 in Work vector */
298:     MatMult(tao->hessian, tao->stepdirection, qp->RHS2);
299:     VecAXPY(qp->RHS2, 1.0, qp->DS);
300:     VecAXPY(qp->RHS2, -1.0, qp->DZ);
301:     VecAYPX(qp->RHS2, qp->dsteplength, tao->gradient);
303:     VecNorm(qp->RHS2, NORM_2, &qp->dinfeas);
304:     VecDot(qp->DZ, qp->DG, gap);
305:     VecDot(qp->DS, qp->DT, gap+1);
307:     qp->rnorm=(qp->dinfeas+qp->psteplength*qp->pinfeas)/(qp->m+qp->n);
308:     pstep = qp->psteplength;
309:     step = PetscMin(qp->psteplength,qp->dsteplength);
310:     sigmamu= ( pstep*pstep*(gap[0]+gap[1]) +  (1 - pstep + pstep*sigma)*qp->gap  )/qp->m;
312:     if (qp->predcorr && step < 0.9){
313:       if (sigmamu < qp->mu){
314:         sigmamu=sigmamu/qp->mu;
315:         sigmamu=sigmamu*sigmamu*sigmamu;
316:       } else {sigmamu = 1.0;}
317:       sigmamu = sigmamu*qp->mu;
319:       /* Compute Corrector Step */
320:       VecPointwiseMult(qp->DZ, qp->DG, qp->DZ);
321:       VecScale(qp->DZ, -1.0);
322:       VecShift(qp->DZ, sigmamu);
323:       VecPointwiseDivide(qp->DZ, qp->DZ, qp->G);
325:       VecPointwiseMult(qp->DS, qp->DS, qp->DT);
326:       VecScale(qp->DS, -1.0);
327:       VecShift(qp->DS, sigmamu);
328:       VecPointwiseDivide(qp->DS, qp->DS, qp->T);
330:       VecCopy(qp->DZ, qp->RHS2);
331:       VecAXPY(qp->RHS2, -1.0, qp->DS);
332:       VecAXPY(qp->RHS2, 1.0, qp->RHS);
334:       /* Approximately solve the linear system */
335:       MatDiagonalSet(tao->hessian, qp->DiagAxpy, ADD_VALUES);
336:       MatAssemblyBegin(tao->hessian,MAT_FINAL_ASSEMBLY);
337:       MatAssemblyEnd(tao->hessian,MAT_FINAL_ASSEMBLY);
338:       KSPSolve(tao->ksp, qp->RHS2, tao->stepdirection);
339:       KSPGetIterationNumber(tao->ksp,&its);
340:       tao->ksp_its+=its;
341:       tao->ksp_tot_its+=its;
343:       MatDiagonalSet(tao->hessian, qp->HDiag, INSERT_VALUES);
344:       MatAssemblyBegin(tao->hessian,MAT_FINAL_ASSEMBLY);
345:       MatAssemblyEnd(tao->hessian,MAT_FINAL_ASSEMBLY);
346:       QPComputeStepDirection(qp,tao);
347:       QPStepLength(qp);
349:     }  /* End Corrector step */
352:     /* Take the step */
353:     dstep = qp->dsteplength;
355:     VecAXPY(qp->Z, dstep, qp->DZ);
356:     VecAXPY(qp->S, dstep, qp->DS);
357:     VecAXPY(tao->solution, dstep, tao->stepdirection);
358:     VecAXPY(qp->G, dstep, qp->DG);
359:     VecAXPY(qp->T, dstep, qp->DT);
361:     /* Compute Residuals */
362:     QPIPComputeResidual(qp,tao);
364:     /* Evaluate quadratic function */
365:     MatMult(tao->hessian, tao->solution, qp->Work);
367:     VecDot(tao->solution, qp->Work, &d1);
368:     VecDot(tao->solution, qp->C0, &d2);
369:     VecDot(qp->G, qp->Z, gap);
370:     VecDot(qp->T, qp->S, gap+1);
372:     qp->pobj=d1/2.0 + d2+qp->c;
373:     /* Compute the duality gap */
374:     qp->gap = (gap[0]+gap[1]);
375:     qp->dobj = qp->pobj - qp->gap;
376:     if (qp->m>0) qp->mu=qp->gap/(qp->m);
377:     qp->rgap=qp->gap/( PetscAbsReal(qp->dobj) + PetscAbsReal(qp->pobj) + 1.0 );
378:   }  /* END MAIN LOOP  */
379:   return(0);
380: }
384: static PetscErrorCode QPComputeStepDirection(TAO_BQPIP *qp, Tao tao)
385: {
389:   /* Calculate DG */
390:   VecCopy(tao->stepdirection, qp->DG);
391:   VecAXPY(qp->DG, 1.0, qp->R3);
393:   /* Calculate DT */
394:   VecCopy(tao->stepdirection, qp->DT);
395:   VecScale(qp->DT, -1.0);
396:   VecAXPY(qp->DT, -1.0, qp->R5);
398:   /* Calculate DZ */
399:   VecAXPY(qp->DZ, -1.0, qp->Z);
400:   VecPointwiseDivide(qp->GZwork, qp->DG, qp->G);
401:   VecPointwiseMult(qp->GZwork, qp->GZwork, qp->Z);
402:   VecAXPY(qp->DZ, -1.0, qp->GZwork);
404:   /* Calculate DS */
405:   VecAXPY(qp->DS, -1.0, qp->S);
406:   VecPointwiseDivide(qp->TSwork, qp->DT, qp->T);
407:   VecPointwiseMult(qp->TSwork, qp->TSwork, qp->S);
408:   VecAXPY(qp->DS, -1.0, qp->TSwork);
409:   return(0);
410: }
414: static PetscErrorCode QPIPComputeResidual(TAO_BQPIP *qp, Tao tao)
415: {
417:   PetscReal      dtmp = 1.0 - qp->psteplength;
420:   /* Compute R3 and R5 */
422:   VecScale(qp->R3, dtmp);
423:   VecScale(qp->R5, dtmp);
424:   qp->pinfeas=dtmp*qp->pinfeas;
426:   VecCopy(qp->S, tao->gradient);
427:   VecAXPY(tao->gradient, -1.0, qp->Z);
429:   MatMult(tao->hessian, tao->solution, qp->RHS);
430:   VecScale(qp->RHS, -1.0);
431:   VecAXPY(qp->RHS, -1.0, qp->C0);
432:   VecAXPY(tao->gradient, -1.0, qp->RHS);
434:   VecNorm(tao->gradient, NORM_1, &qp->dinfeas);
435:   qp->rnorm=(qp->dinfeas+qp->pinfeas)/(qp->m+qp->n);
436:   return(0);
437: }
441: static PetscErrorCode QPStepLength(TAO_BQPIP *qp)
442: {
443:   PetscReal      tstep1,tstep2,tstep3,tstep4,tstep;
447:   /* Compute stepsize to the boundary */
448:   VecStepMax(qp->G, qp->DG, &tstep1);
449:   VecStepMax(qp->T, qp->DT, &tstep2);
450:   VecStepMax(qp->S, qp->DS, &tstep3);
451:   VecStepMax(qp->Z, qp->DZ, &tstep4);
454:   tstep = PetscMin(tstep1,tstep2);
455:   qp->psteplength = PetscMin(0.95*tstep,1.0);
457:   tstep = PetscMin(tstep3,tstep4);
458:   qp->dsteplength = PetscMin(0.95*tstep,1.0);
460:   qp->psteplength = PetscMin(qp->psteplength,qp->dsteplength);
461:   qp->dsteplength = qp->psteplength;
463:   return(0);
464: }
469: PetscErrorCode TaoComputeDual_BQPIP(Tao tao,Vec DXL, Vec DXU)
470: {
471:   TAO_BQPIP       *qp = (TAO_BQPIP*)tao->data;
472:   PetscErrorCode  ierr;
475:   VecCopy(qp->Z, DXL);
476:   VecCopy(qp->S, DXU);
477:   VecScale(DXU, -1.0);
478:   return(0);
479: }
483: PetscErrorCode QPIPComputeNormFromCentralPath(TAO_BQPIP *qp, PetscReal *norm)
484: {
486:   PetscReal      gap[2],mu[2], nmu;
489:   VecPointwiseMult(qp->GZwork, qp->G, qp->Z);
490:   VecPointwiseMult(qp->TSwork, qp->T, qp->S);
491:   VecNorm(qp->TSwork, NORM_1, &mu[0]);
492:   VecNorm(qp->GZwork, NORM_1, &mu[1]);
494:   nmu=-(mu[0]+mu[1])/qp->m;
496:   VecShift(qp->GZwork,nmu);
497:   VecShift(qp->TSwork,nmu);
499:   VecNorm(qp->GZwork,NORM_2,&gap[0]);
500:   VecNorm(qp->TSwork,NORM_2,&gap[1]);
501:   gap[0]*=gap[0];
502:   gap[1]*=gap[1];
505:   qp->pathnorm=PetscSqrtScalar( (gap[0]+gap[1]) );
506:   *norm=qp->pathnorm;
507:   return(0);
508: }
512: static PetscErrorCode TaoSetFromOptions_BQPIP(PetscOptionItems *PetscOptionsObject,Tao tao)
513: {
514:   TAO_BQPIP      *qp = (TAO_BQPIP*)tao->data;
518:   PetscOptionsHead(PetscOptionsObject,"Interior point method for bound constrained quadratic optimization");
519:   PetscOptionsInt("-tao_bqpip_predcorr","Use a predictor-corrector method","",qp->predcorr,&qp->predcorr,0);
520:   PetscOptionsTail();
521:   KSPSetFromOptions(tao->ksp);
522:   return(0);
523: }
527: static PetscErrorCode TaoView_BQPIP(Tao tao, PetscViewer viewer)
528: {
530:   return(0);
531: }
533: /* --------------------------------------------------------- */
534: /*MC
535:  TAOBQPIP - bounded quadratic interior point algorithm for quadratic 
536:     optimization with box constraints.
538:  Notes: This algorithms solves quadratic problems only, the linear Hessian will
539:         only be computed once.
541:  Options Database Keys:
542: . -tao_bqpip_predcorr - use a predictor/corrector method
544:   Level: beginner
545: M*/
549: PETSC_EXTERN PetscErrorCode TaoCreate_BQPIP(Tao tao)
550: {
551:   TAO_BQPIP      *qp;
555:   PetscNewLog(tao,&qp);
556:   tao->ops->setup = TaoSetUp_BQPIP;
557:   tao->ops->solve = TaoSolve_BQPIP;
558:   tao->ops->view = TaoView_BQPIP;
559:   tao->ops->setfromoptions = TaoSetFromOptions_BQPIP;
560:   tao->ops->destroy = TaoDestroy_BQPIP;
561:   tao->ops->computedual = TaoComputeDual_BQPIP;
563:   /* Override default settings (unless already changed) */
564:   if (!tao->max_it_changed) tao->max_it=100;
565:   if (!tao->max_funcs_changed) tao->max_funcs = 500;
566: #if defined(PETSC_USE_REAL_SINGLE)
567:   if (!tao->catol_changed) tao->catol=1e-6;
568: #else
569:   if (!tao->catol_changed) tao->catol=1e-12;
570: #endif
572:   /* Initialize pointers and variables */
573:   qp->n              = 0;
574:   qp->m              = 0;
575:   qp->ksp_tol       = 0.1;
577:   qp->predcorr       = 1;
578:   tao->data = (void*)qp;
580:   KSPCreate(((PetscObject)tao)->comm, &tao->ksp);
581:   KSPSetOptionsPrefix(tao->ksp, tao->hdr.prefix);
582:   KSPSetType(tao->ksp, KSPCG);
583:   KSPSetTolerances(tao->ksp, 1e-14, 1e-30, 1e30, PetscMax(10,qp->n));
584:   return(0);
585: }